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ABSTRACT

Many space-science experiments require active

vibration isolation. Boeing's Active Rack Isolation

System (ARIS) isolates experiments at the rack (vs.

experiment or sub-experiment) level, with multiple
experiments per rack. An ARIS-isolated rack typically

employs eight actuators and thirteen umbilicals; the

umbilicals provide services such as power, data

transmission, and cooling.
Hampton, et al., used "Kane's method" to develop

an analytical, nonlinear, rigid-body model of ARIS that

includes full actuator dynamics (inertias). This model,

less the umbilicals, was first implemented for simulation
by Beech and Hampton; they developed and tested their

model using two commercial-off-the-shelf (COTS)

software packages. Rupert, et al., added umbilical-
transmitted disturbances to this nonlinear model.

Because the nonlinear model, even for the untethered

system, is both exceedingly complex and

"encapsulated" inside these COTS tools, it is largely
inaccessible to ARIS controller designers.

This paper shows that ISPR rattle-space constraints

and small ARIS actuator masses permit considerable

model simplification, without significant loss of fidelity.
First, for various loading conditions, comparisons are

made between the dynamic responses of the nonlinear
model (untethered) and a truth model. Then

comparisons are made among nonlinear, linearized, and
linearized reduced-mass models. It is concluded that

these three models all capture the significant system
rigid-body dynamics, with the third being preferred due

to its relative simplicity.

INTRODUCTION

Acceleration levels currently achievable on the

International Space Station (ISS) exceed those required
by many space-science experiments. (See, for example,
Delombard, et al., 1997_). Various active isolation

systems have been built to address the need tbr

microgravity isolation. The first was called STABLE

* Member AIAA
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("Suppression of Transient Accelerations By Levitation"),

which uses six independently controlled Lorentz

actuators to levitate and isolate at the experiment level
(Edberg, et al., 19962). STABLE was successfully

flight-tested on STS-73 (USML-02) in October 1995.

NASA's Marshall Space Flight Center is currently
developing a second-generation experiment-level

isolation system (g-LIMIT: "Glovebox Integrated

Microgravity Isolation Technology"), building on the
technology developed for STABLE (Whorton, 19983).

This compact system will isolate microgravity payloads

in the Microgravity Science Glovebox (MSG).

For the ISS, the Boeing Corporation has developed
the Active Rack Isolation System (ARIS), which, in

contrast to these above two experiments, isolates at the

International Standard Payload Rack (ISPR) level.

Instead of using magnetic levitation, ARIS employs a
set of eight voice-coil (Lorentz) actuators strategically
mounted between the exterior of each ARIS-outfitted

ISPR and the ISS, as shown in Figure 1.
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Figure I. ARIS-OutfinedISPR

The separation of the actuators around the ISPR

increases the torque authority, and therefore reduces the

weight and power requirements, of the system. One
disadvantage of ARIS, compared to a magnetically
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levitated system, is the additional complexity in the

mathematical description necessary for controller

design.

In order to provide for model-based controller
design, one needs, first, an appropriate physical
isolation device; and second, a mathematical model for

the system dynamics of that isolator. In the present

case, ARIS is the physical device; this paper adresses

the development of an appropriate mathematical model
of ARIS, to facilitate the development of a suitable

controller. The linearized equations of motion for a

controlled dynamical system can be written in the

tollowing descriptor form:

[M]{__}=[A]{x}+[B]{i}+[E]{d}, (1)

where system matrices [M] and [A] represent the

physics of the system, and control input matrix [B]

describes the manner in which the control input is

applied. The control vector / is the vector of control

currents, applied to the Lorentz coils. The disturbance
vector d accounts lbr indirect disturbances (i.e.,

transmitted indirectly from the ISS via the actuators or

umbilicals) and direct disturbances (i.e., directly applied

to the ISPR). [El is the system disturbance input

matrix. (For anticipated disturbance levels, see NASA
Specification Number SSP41000, Rev. D., 19954).

DESCRIPTION OF ARIS

The total dynamical system S-consists of the stator

S (ISS and the integral frame, from the motion of which
ARIS isolates the ISPR), the flotor F (the ISPR), the

eight electromechanical actuator assemblies, and the
umbilicals. The ISPR is connected to the ISS by eight
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Figure 2. Actuator Assembly Diagram

actuator assemblies, and by a variable number (typically
thirteen) of umbilicals. The actuator assemblies are

used to apply forces for attenuation of indirect and
direct disturbances, using sensed payload inertial

accelerations and relative positions.

Each actuator assembly consists of a rotary-type

Lorentz (voice-coil) actuator with a position sensor, an

arm, and a push-rod, as shown in Figure 2. The ARIS
actuators have been designed for negligible static and
kinetic friction. Each actuator arm is connected to the

ISPR through an associated cross-flexure, a joint with a

single rotational degree of freedom. The other end of

each arm is connected to its respective push-rod through
an upper stinger, a joint with two rotational degrees of

freedom (in bending). The opposite end of each push-

rod is connected to the ISS through a lower stinger, to

allow three rotational degrees of freedom (two in
bending, one in torsion) with respect to the ISS. Each

actuator joint is modeled as a spring with no mass.

For modeling purposes, the ISS, the ISPR, the

actuator arms and the push-rods are considered to be
rigid bodies, with mass centers at points

S; F _ A,, and P_', respectively. The superscript *

indicates the mass center of the indicated rigid body; the

subscript i corresponds to the i thactuator (i=1 ..... 8). All

springs (cross-flexures and stingers) are assumed to be
relaxed when the ISPR is centered in its rattlespace (the

"home position"). Umbilical stiffnesses and dampings

are not included in this paper; they are treated
separately by Rupert and Hampton]

METHODOLOGY

G. Beech and D. Hampton 5 previously reported

using the method of Thomas Kane 6 to develop a

linearized, analytical, rigid-body model of ARIS.
Model development was initially accomplished directly

by hand (rather than by the more difficult task of
linearizing a full nonlinear model), and checked

subsequently by symbolic-manipulation computer

software. The linearized model includes the following

inputs: (1) direct actuator control |brces (i.e., applied
directly to the ISPR via the actuator), (2) direct

disturbance forces (i.e., acting directly on the ISPR),
(3) indirect, actuator-transmitted disturbances (i.e.,

transmitted from the ISS along the eight actuators to the
ISPR), and (4) umbilical-transmitted disturbances,

under the assumption of diagonal umbilical-stiffness

and -damping matrices. The ARIS actuator angles, six

per actuator, were chosen as coordinates.

Beech and Hampton subsequently completed,
calibrated, and tested [using commercial-off-the-shelf

(COTS) software] a corresponding nonlinear, analytical,

rigid-body model for the untethered system. This

nonlinear "Kane's model" was desired for the following
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reasons: (I) to simulate the full, nonlinear, rigid-body

system; (2) to determine the range, and degree, of
fidelity of the linearized model; and (3) to seek the

simplest obtainable high-fidelity, dynamical model

which would be suitable for controller design. A

nonlinear model was first developed for the simpler,

untethered system. (The tethers were included later, as
a separate task. 7) Even without tethers the ensuant

nonlinear model is exceedingly complex. Further (in

consequence), it is, to a great extent, "encapsulated"
inside the COTS tools in a way that made its details

largely inaccessible to controller designers. In addition,

the matrices [M] and [A] described above are large (54

x 54), nonlinear, and generally not well-suited (due to

their great complexity) for entry into MATLAB, or
other standard controller-design software tools.

Fortunately, ARIS' inertia characteristics and limited

range of motion permit model-simplification, so that a

more manageable representation of the system dynamics
is possible.

It would have been desirable to validate the ARIS

model (in the form of Eq. 1) by first testing the actual

ARIS hardware in a near-microgravity (milli-g)
environment and then using those results as a basis for

model evaluation. However, because such testing of

ARIS can only be accomplished on-orbit, computer-

simulation models were chosen to achieve a high degree
of confidence in the nonlinear analytical model, in

anticipation of on-orbit tests.

Two complementary kinds of high-fidelity
computer-simulation models were developed:

kinematical and dynamical. The kinematical model of

ARIS is a nonlinear, 18-rigid-body model (ISS, plus

ISPR, plus eight actuator arms, plus eight actuator push-
rods) based on high-fidelity CAD models; it computes

and displays (pictorially and numerically) the

configuration of the eight actuators for arbitrary
positions of the ISPR. Measurements from the

supporting CAD models provide numerical values (e.g.,

geometric lengths, inertias, position coordinates, and

actuator angles) for use in the dynamical models. The
dynamical models are 18-rigid-body analytic_tl models

that, when properly initialized and calibrated, can

compute ARIS actuator-angles and -angular rates for

various force and moment test inputs. The actuator-
angle outputs from these models can be compared to

data from the kinematical model at any stage (snapshot)

in a dynamical simulation, to ensure proper

incorporation of the configuration constraints. The
basic dynamical model is a nonlinear model with full

masses and inertias. Various simplifications to this

model produced other dynamical models of ARIS.

A two-body baseline or truth model of thc ARIS

dynamics was also developed, to provide a benchmark

for comparison against the full 18-rigid-body models.

The truth model represents an ISPR in zero gravity,

without any actuators or umbilicals, having the same

mass properties as in the basic nonlinear dynamical

model. The six degrees of freedom used to specify the
position and orientation of the ISPR are translation

along, and rotation about, the three ISS coordinate axes.

The system dynamics of the basic dynamical (18-

body, nonlinear, full-inertia) model are compared to the

system dynamics of the truth (two-body) model. This

comparison is accomplished by reducing the actuator
spring constants (internal actuator forces) of the

nonlinear model to negligible levels, and applying a

common set of test inputs directly to the ISPR of both

models. This gives a good comparison between the two

models for motion of the ISPR within its rattlespace.
Beginning with the nonlinear model two

assumptions can be made to simplify it, for easier use

with traditional controller-design tools (such as

MATLAB), without sacrificing model fidelity. First,
because the motion of an ARIS-equipped ISPR is

limited, the actuator angles can be assumed to remain

small. This permits iinearization using small angle
approximations. Second, because the masses of the

arms and push-rods of the ARIS actuators represent

only a small fraction of the overall ISPR mass, their

inertial forces can be neglected. It is important to note
that with this latter simplification only the inertial forces

of the actuator arms and push-rods are neglected--all of

the actuators' applied and internal forces are retained.
These simplifications are treated further in the

following sections.

SOFTWARE TOOLS

The development and validation of the basic
dynamical model were achieved using two Commercial-

Off-The-Shelf (COTS) software tools: Delmia's

(formerly Deneb Robotics) Envision and OnLine
Dynamics' AUTOLEV.

Figure 3. Envision Model of ARIS
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Envision is a robotics software package developed

for the automotive industry that employs three-
dimensional CAD models to facilitate torward and

inverse kinematics analyses. Once CAD models of each

of the rigid bodies of ARIS are translated into Envision,

coordinate systems representing the attachment
locations are added. The ARIS actuators are then built

up individually in a parent-child fashion from the CAD

models, and an algorithm for an inverse kinematics
solution is applied to each. Next all of the actuators, the

ISS, and the ISPR are appropriately combined, and the

system is activated in a common CAD environment. A

user can then specify the configuration of a single input
actuator, and the remaining seven actuators will be

moved to their corresponding configurations, as

determined by their respective inverse kinematics

algorithms and the constraints of the system. Then the

configuration information for each of the actuators can
be compared to the configuration specified by the
AUTOLEV simulations.

AUTOLEV is a DOS-based interpreter that is

designed, in general, to solve vector-based
mathematical problems and, in particular, to solve
dynamics problems using "Kane's method ''6'8. Because

AUTOLEV is an interpreter, all of the commands

entered for a particular session are stored in memory
and can be written to a file. Alternatively, a user can

develop a text file that contains the commands to be

read by AUTOLEV, for a particular session, as if the
commands had been entered manually. The output from

AUTOLEV is a C program. This program, when

compiled, linked, and run, creates a DOS executable
file which, in turn, creates a data file of the specified

output for a given simulation run. There is a close
correspondence between the linearized analytical ARIS

model of Equation 1 and the nonlinear AUTOLEV
model, because the underlying developments for both
use Kane's method.

NONLINEAR ANALYTIC MODEL

Using Kane's method, Hampton and Beech

developed an analytical model of the ARIS dynamics
that incorporates the actuator dynamics and utilizes

coordinate systems based on the ARIS actuators 5. This

18-body model consists of fifty-four equations: forty-

two constraint equations, six kinematical equations, and

six dynamical equations. If one considers an ARIS-
outfitted ISPR moving relative to the ISS, the ISPR

motion can be fully described in terms of six degrees of

freedom. (The ISS motion can be considered to be

translational only, assuming very small ISS angular

velocities and angular rates, and to provide disturbance
inputs to a six-degree-of-freedom system.) These six

degrees of freedom are commonly, although not

necessarily, characterized by translations along, and

rotations about, the (ISS) x-, y- and z-axis directions.
With the ARIS system, however, there are eight

six-degree-of-freedom actuators attached between the

ISPR and the ISS. These actuators represent forty-eight

degrees of freedom, many more than necessary for

describing the configuration of an ARIS-outfitted ISPR.

Indeed, the specification of the configuration of any

single actuator completely describes the configuration
of the ISPR relative to the ISS. Therefore, the forty-

eight degrees of freedom can be divided into six

independent, and forty-two dependent, degrees of
freedom.

Although ARIS contains only six independent

degrees of freedom, as noted above, it is necessary to

know the values and time-rates-of-change of all forty-

eight degrees of freedom in order to describe the system
dynamics. Therefore, one can select the forty-eight

coordinates and the forty-eight time-rates-of-change of

these coordinates as the ninety-six states of the system.

Knowledge of these ninety-six states, as functions of
time, is necessary and sufficient for knowledge of the

dynamics of the 18-rigid-body system.

It follows that ninety-six equations are needed to

solve the ninety-six unknowns of ARIS. The equations
can be classified generally as kinematical, dynamical,

and constraint equations. The kinematical equations

simply express the time-rates-of-change of the

coordinates as generalized speeds. Thus, the forty-eight
kinematical equations represent this simple relationship:

q, =,,i (fo,.i= .....48) (2)

where qirepresents the ith coordinate; and u_, the i 'h

generalized speed.

Forty-two of the ninety-six equations are
bolonomic constraint equations, which can be expressed

most simply in non-bolonomic form. Twenty-one of the

equations represent the fact that each component of the
angular velocity of the ISPR, regardless of the actuator

through which it is specified, is a single quantity.

Another twenty-one equations represent the fact that

each component of the velocity of the center-of-mass of
the ISPR (again, regardless of the actuator through

which it is specified), is a single quantity. The forty-

two constraint equations can be expressed as follows:
6

ur =ZA,:,u,(f°r r=7 ..... 48), (3)
s=l

where the u, 's are the independent generalized speeds,

the u, 's are the dependent generalized speeds, and the

Ar._ 's are scalar coefficients derived from the constraint

equations (Kane, T. and Levinson, D., 19956).
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The remaining six equations are the dynamical

equations for ARIS. It is these six dynamical equations
which are particularly complex for the ARIS system.

Some of the factors contributing to their complexity are

the number of rigid bodies in the system, the connecting

springs, and the over-constrained nature of ARIS.

Using the superscripts I and D to mean "independent"

and "dependent," respectively, define the following:

' [ql q_ q_ q/ q_ q_ Jr, (4)q =

/ -I
u = q , (5)

and l_ D = q O, (6)

where the numerical superscripts and subscripts indicate
the actuators and actuator angles (in some convenient

order), respectively. The equations of motion for ARIS

can now be expressed in the following descriptor form:

[;ool, ,[o lf+t, o/ +ot=o°o .o
o Mjt;,,j ,+,,¢,,

[;]+ {/}+ (7)

The state vector consists of the 48 coordinates

ql qOj_ and the six independent generalized speeds
"IT

u/, where

The constant submatrices [M], [Ki, Ka,] and [C] are
system mass, stiffness, and damping matrices,

respectively; the 42x6 constant matrix N comes from

the constraint equations, where the ij element N,j is At.,.,
for r=i+6 and s=j. The symbols I and O represent,

respectively, an identity matrix and a zero matrix of

appropriate dimensions; the vector i contains the eight

control currents to the Lorentz coils; and the vector d

is the disturbance vector. The elements of input

matrices B and E are time-varying, nonlinear functions
of the coordinates.

As indicated previously, the nonlinear model above

is prohibitively complex for symbolic entry into

MATLAB or other traditional controller design

software, and is presented here only in representative
vector form. A computer-based, nonlinear,

encapsulated, rigid-body, analytical model of ARIS

(untethered) was successfully developed in AUTOLEV,

however, and calibrated numerically using the Envision
model.

THE FREE-FLOATING ISPR

(TRUTH) MODEL

A second dynamical model was developed in
AUTOLEV to represent the system dynamics of an

ISPR in zero gravity with characteristic mass properties,

but without any actuators. This benchmark, or truth,

model calculates the response in translation and rotation

of the ISPR center of mass in response to test forces
applied at various points on the ISPR. The coordinates

used in this model are translation along, and rotation

about, the ISS-fixed x-, y- and z-axes. This model

provides a basis for comparison, by simulation, of other

more complex dynamical models, primarily because
hardware validation would require resources beyond

those currently available.

An advantage of this model is its simplicity; it is

limited, however, in that it is useful for comparison
purposes only when the dynamics of the actuators are

negligible. This means, first, that the torsional springs

at the lower and upper stingers and cross-flexures (for

the full dynamical models against which it is being

compared) must have negligible stiffnesses. Second,
the actuators must not reach full-extension. The

actuator spring constants are easily changed to

negligible levels in the full dynamical models, by

appropriately specifying their values in the AUTOLEV
code. The full-extension constraints only come into

play when the actuators would otherwise extend beyond

their physical limitations. In the actual hardware, the
ISPR displacements from the home position are limited

to a half-inch rattle-space by a snubber system. In the

dynamical simulation models there is no such system,
however, and the motion must be limited by the

disturbance input or the simulation duration.

LINEARIZED ANALYTICAL MODEL

With the nonlinear model of ARIS completed,

linearization is relatively easy using AUTOLEV. The

automatic linearization of the generalized active and

generalized inertial forces is accomplished with a single
AUTOLEV command. The arguments this command

describe the order of the terms of a Taylor-series
expansion, here tbe 0 th and l S'-order terms, and the

arguments about which the Taylor-series expansion is to

be performed. The result is a linearized form of the
ARIS dynamics.

To realize fully the impact of linearization, one

must appreciate the enormous complexity of the

nonlinear dynamical equations. The six dynamical
equations of ARIS are obtained using the following

process. First, add the respective contributions of the

17 rigid bodies (the ISS is assumed for the present to be

infinitely massive or, equivalently, to have specified
motion, and makes no contribution) to the set of

5
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holonomic generalized active and -generalized inertia
forces, for each generalized speed (i.e., r=! ..... 48) as

defined using the two equations,

Qr =v .R+o9 .T, (9)

and Qr = _2r .e* +(_.O r .T*, (10)

respectively. The factors vrand 6% are the partial

derivatives of the velocity and angular velocity,

repectively, of the affected point or body, with respect

to each of the forty-eight generalized speeds. R'and

T* are the inertial force and inertial torque,

respectively, produced by the motion and mass

properties of the ARIS bodies. The holonomic
generalized active force for the//, generalized speed is

17

F,. = E(Fr) i , (ll)
j=l

where (F r) _ is the contribution to the set of holonomic

generalized active forces due to the fh rigid body. That

is,
8

i=1 i=1

where A_ and P, represent the arms and push-rods,

respectively. Likewise the contribution to the set of

holonomic generalized inertia forces is

" )7' *)J ( *r _(tQ;) _+_(tQ:) _ (13)=Zt. r --,,Q,..+
j=l i=1 i=1

The expressions in Equations 12 and 13 are
developed from velocities, accelerations, and angular

velocities of the various points and bodies of ARIS used

in Equations 9 and 10. Because for ARIS these

quantities are typically 20 times as long in nonlinear as
in linearized form, the effect of linearization is quite
dramatic.

LINEARIZED REDUCED-MASS MODEL

A further simplification can be made by setting the
mass properties (masses and inertias) of the actuator

arms and push-rods to zero, while retaining those of the

ISPR. The arms and push-rods represent 16 of the 17
bodies in the generalized inertia forces of the nonlinear

and linearized models, but only about 1.5 percent of the

mass of an ARIS-outfitted ISPR. By setting the mass

properties of the arms and push-rods to zero, the

number of expressions in the set of generalized inertial
forces (see Eq. 13) is reduced by 288 (r = I..... 48, i =

1..... 16). If one develops the relationship between the

dependent and independent generalized speeds in the

form of Equation 3, the nonholonomic and bolonomic
generalized inertia forces are related to each other as
follows:

, , 48 ,

F r = Fr + _ F_ Asr(r= 1..... 6). (14)
s=7

Since Kane's method yields only as many dynamical

equations as independent generalized speeds, removing
these 288 expressions from the holonomic generalized

inertial forces produces a net reduction of 1728

(= 6x 288) terms in the final system equations.

Despite the great reduction in number of terms in

the generalized inertia forces, the simplified (reduced-

mass) dynamical equations maintain the integrity of

both the generalized active forces (including control

and disturbance inputs) and the constraint equations.
The final dynamical equations, therefore, are the same

as those reported previously by Hampton and Beech -s,

excluding the contributions to the generalized inertia

forces from the arms and push-rods.

COMPARISON OF FULL NONLINEAR MODEL
TO TRUTH MODEL

To compare the truth model and the nonlinear
model, the upper and lower stingers and cross-flexure

spring stiffnesses (internal actuator forces) were set to

negligible levels, 0.001 ft-lbf/rad (0.00021 in-
lbf/degree). Various test inputs were applied, at

selected "target points," to compare these models. Two

such test inputs were (1) a constant, one-pound force
with a constant direction relative to the ISPR; and (2) an

oscillating force with an amplitude of one-pound and an

angular frequency of 0.2 radians per second. For the

tests presented below, the target point was arbitrarily
displaced six inches in each orthogonal (coordinate-
axis) direction from the flotor center of mass. The

direction of application for each force is along the
ISPR x-axis.

0.10 1

0.09 q

o.o64
0.07

= 0.06

_. 0.05

o.04
_" 0.03
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................................................................................................................

.._, *°_' i ]

2 4 6 8 10

Time (see)

--'4)--Nonlinear: X-Axis _ Nonlinear: Y-Axis Nonlinear: Z-Axis

Truth: X-Axis --_--Truth: Y-Axis _Truth: Z-Axis

Figure 4. Comparison #1 Between Truth- and Nonlinear Models

The first comparison between the nonlinear and

truth models (Fig. 4) shows the response of each model

to an oscillating input force applied directly to the
ISPR. The respective model behaviors are very similar
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throughout the ten-second simulation. The differences
between the two can be attributed to numerical round-

off errors in the fixed rotations between the ISS-, ISPR-,

and actuator-fixed coordinate systems in the full
nonlinear model, and some minimal effect due to the

actuator springs. In this comparison, the actuators are

not fully extended, so there are no effects from the

constraint equations.
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i
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Figure 5. Comparison #2 Between Truth- and Nonlinear Models

The second comparison (Fig. 5) shows the response

of each model to a constant input force applied to the

ISPR. In this model, the response of the nonlinear

model tracks the response of the truth model for about
4.4 seconds, or until the mass center (CG) has moved

approximately three inches (0.25 ft). At this point, an

actuator linkage is fully extended, so that it jerks the

ISPR, causing its motion to reverse direction.

Figure 6. Envision Visualization of ARIS Actuators

Near Full Extension

This explanation for the observed behavior was

confirmed by the visualization afforded by the Envision
model. In the AUTOLEV simulation, at the time when

the ISPR center of gravity reversed direction, namely

4.4 seconds, the actuator configuration predicted by
AUTOLEV was recorded. That data was then entered

into the Envision model, which clcarly showed an
actuator arm and push-rod having just reached full

extension (see Fig. 6). These two simulations indicate

that if the simple truth model is to be believed, so also is
the lull nonlinear model.

COMPARISON BETWEEN LINEARIZED AND
NONLINEAR MODELS

The small-angle theorem is based on a truncated

Maclaurin-series expansion of the expressions for sine
and cosine (about 0):

03 05
sin 0 = 0-u+---... , (15)

3 5

02 04
and cos 0 = I --- + -- -.... (16)

2 4

Depending on the application, this approximation is

accurate for values of 0 less than about 17 degrees. In

the present application, the linearization is particularly
relevant to the constraint equations; values of 0 less

than about eight degrees produce small-angle
approximations that stay within the error tolerance for

the encapsulated constraint equations.

0.30

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

0 2 4 6 8 10

Time (sec)

Low:. X-Axis + Low:. Y-AXis Low: Z-AXis 1

...._.-- Mod,: X-AXis -.xr,-- Mod.: Y-AXis ---e.--Mod,: z-AxisJ

Figure 7. Low vs. Moderate Actuator Spring Stiffness,

Response to Constant Test Input

To ensure that the ISPR remains within its rattle-

space (for open-loop simulation purposes), so that the

small-angle approximations remain valid, the spring

stiffnesses at the cross-flexure and upper and lower
stingers were increased to nominal levels. The spring

rates were set to !.0 ft-lbf/rad (0.21 in-lbf/degree). In

Figure 7, one can see how the effect of the increased

actuator spring constants changes the ISPR response to
the applied force. The ISPR motion in the case of

moderate actuator spring constants is relatively small,

compared to the ISPR motion for negligible actuator

spring constants.
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Figure 8. Actuator #1 Angles, for Low Actuator Spring Rates

Figure 8 shows the response, measured in actuator

#1 angles, when the spring constants are negligible and

the ISPR is subjected to a constant input force. At

about 4.4 seconds, the actuator angles exceed the region
bounded by the +/- 0.2 radians, within which the

linearized constraint equations are valid. Accordingly,

Figure 9 which shows that the linearized model

corresponds well to the nonlinear model until the
simulation reaches 4.4 seconds. Alter that time, the

linearized model fails because the constraint equations

no longer hold.
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Figure 9. Linearized vs. Nonlinear Model, for Low Stiffness:

Response to Direct, Constant Test Input
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Figure 10. Actuator #1 Angles, for Moderate Actuator Spring Rates

Figure 10 shows the response, measured in actuator
#1 angles, when the spring constants are increased to

moderate levels (0.21 in-lb/degree) and the ISPR is

again subjected to a constant input force. In this case,

the angles never exceed the region defined by +/- 0.20

radians. In fact, the angles for actuator #1 never exceed

+/- 0.10 radians. Figure 11 shows a comparison
between the ISPR motion for the linearized and

nonlinear models when the actuator spring constants are

increased to moderate levels. In this case there is nearly
an exact match between the two models.

0103 _ ............................................................................................. _ ................
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Linear: X-Axis --l(---Linear: Y-Axis _ Line'ar: Z-Axis

Figure 1 I. Linearized vs. Nonlinear Model, for Moderate

Stiffness: Response to Direct, Constant Test Input

This is an important result; it shows that for small

angles, the linearized model very closely tracks the full

nonlinear model, which, as was noted previously, tracks
the truth model. With the actual hardware, the ISPR

will stay centered in its rattle-space due to the active

control system. Assuming, then, the correctness of the
simple truth model, the linearized model is accurate

within operational (rattle-space) limits.

COMPARISON BETWEEN LINEARIZED

REDUCED-MASS AND NONLINEAR MODELS

Since the generalized inertia forces are the most

complex expressions in the dynamical equation
development, the omission of the 288 expressions for the

arms and push-rods represents a substantial reduction in

the overall size of the dynamical equations, as noted

before (see Eqs. 10, 13). This simplification is made by

0,03 7

o.03] ,,¢"_'%_ g,'¢"'%, i

0.02 %0.o2t ,.:" o. - oo ":
n nt J "_ v0 ._ i

0 t313 - -_°..... ' ' ' --

0 2 4 6 B 10

lime (see)

---_--I',k3fllinear: X-Axis -I--Nonlinear: Y-Axis Nor#ineat_ Z-Axis

L-R-M: X-Axis _ DR-M: Y-Axis + L-R-M: Z-Axis

Figure 12. Linearized Reduced-mass vs. Nonlinear Model, for

Moderate Stiffness: Response to Direct, Constant Test Input
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by simply setting the appropriate masses, and the 4.

appropriate moments and products of inertia, to zero in

the AUTOLEV code, and then recompiling the generated

C program.

Figure 12 shows the response measured, in linear 5.

displacement of the ISPR center of mass, when the

spring constants are increased to moderate levels (0.21
in-lbf/degree) and the ISPR is again subjected to a

constant input force. From this plot, it is apparent that 6.

neglecting the mass properties of the arms and push-rods

has little effect on the model's description of system

behavior. This is as expected, for two reasons. First, as
noted previously, the masses of the arms and push-rods 7.

are relatively small in comparison to the overall mass of
an ARIS-outfitted ISPR. Second, because the ARIS

arms and push-rods are more closely linked to the

(relatively "fixed") space station than to the ISPR, the 8.

amplitudes of their displacements, velocities and
accelerations will be correspondingly smaller than those
of the ISPR.

CONCLUSION

This paper has presented comparisons among
nonlinear, linearized, and linearized reduced-mass

models of ARIS (all without umbilicals). Direct and

indirect disturbances were applied to these three

models, and the responses were compared. It was

concluded the linearized reduced-mass model captures
the significant system rigid-body dynamics.

Anticipated future work includes (1) the

implementation of the linearized, reduced-mass model,

including umbilicals, in MATLAB; (2) model
improvements based on actuator-characterization and

on-orbit system characterization experiments; and (3)

use of the MATLAB model for optimal controller

design.
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